Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 3869-3878, 2021.
Article in English | WPRIM | ID: wpr-922447

ABSTRACT

Disease-mediated alterations to drug disposition constitute a significant source of adverse drug reactions. Cisplatin (CDDP) elicits nephrotoxicity due to exposure in proximal tubule cells during renal secretion. Alterations to renal drug transporter expression have been discovered during nonalcoholic steatohepatitis (NASH), however, associated changes to substrate toxicity is unknown. To test this, a methionine- and choline-deficient diet-induced rat model was used to evaluate NASH-associated changes to CDDP pharmacokinetics, transporter expression, and toxicity. NASH rats administered CDDP (6 mg/kg, i.p.) displayed 20% less nephrotoxicity than healthy rats. Likewise, CDDP renal clearance decreased in NASH rats from 7.39 to 3.83 mL/min, renal secretion decreased from 6.23 to 2.80 mL/min, and renal CDDP accumulation decreased by 15%, relative to healthy rats. Renal copper transporter-1 expression decreased, and organic cation transporter-2 and ATPase copper transporting protein-7b increased slightly, reducing CDDP secretion. Hepatic CDDP accumulation increased 250% in NASH rats relative to healthy rats. Hepatic organic cation transporter-1 induction and multidrug and toxin extrusion protein-1 and multidrug resistance-associated protein-4 reduction may contribute to hepatic CDDP sequestration in NASH rats, although no drug-related toxicity was observed. These data provide a link between NASH-induced hepatic and renal transporter expression changes and CDDP renal clearance, which may alter nephrotoxicity.

2.
Acta Pharmaceutica Sinica B ; (6): 923-936, 2019.
Article in English | WPRIM | ID: wpr-774933

ABSTRACT

It is critical to regulate the senescence-associated secretory phenotype (SASP) due to its effect on promoting malignant phenotypes and limiting the efficiency of cancer therapy. In this study, we demonstrated that marchantin M (Mar-M, a naturally occurring bisbibenzyl) suppressed pro-inflammatory SASP components which were elevated in chemotherapy-resistant cells. Mar-M treatment attenuated the pro-tumorigenic effects of SASP and enhanced survival in drug-resistant mouse models. No toxicity was detected on normal fibroblast cells or in animals following this treatment. Inactivation of transcription factor EB (TFEB) and nuclear factor-B (NF-B) by Mar-M significantly accounted for its suppression on the components of SASP. Furthermore, inhibition of SASP by Mar-M contributed to a synergistic effect during co-treatment with doxorubicin to lower toxicity and enhance antitumor efficacy. Thus, chemotherapy-driven pro-inflammatory activity, seen to contribute to drug-resistance, is an important target for Mar-M. By decreasing SASP, Mar-M may be a potential approach to overcome tumor malignancy.

SELECTION OF CITATIONS
SEARCH DETAIL